Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames

نویسندگان

  • JUN JI
  • Y. R. SIVATHANU
چکیده

Thermal radiation properties of turbulent premixed flames have received little attention in the past perhaps because of the lower radiative heat loss compared with that for non-premixed flames. However, the high-temperature sensitivity of NO kinetics and the importance of radiation in near-limit laminar premixed flames provide fundamental reasons for studies of radiation properties of turbulent premixed flames. Reduced cooling airflows in lean premixed combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion control schemes are some of the practical reasons for studying radiation heat transfer in these flames. Motivated by this, we report the first (to our knowledge) study of spectral radiation properties of turbulent premixed flames. Measurements of mean, root mean square (rms) and probability density functions (PDFs) of spectral radiation intensities leaving diametric paths at five heights in two turbulent lean premixed methane/air jet flames stabilized using small H2/air pilot flames in a coflow of air were completed. Measurements of spectral radiation intensities leaving three laminar flames were also completed. These data were used to evaluate narrowband radiation calculations independent of the treatment of turbulent fluctuations. Stochastic spatial series analysis was used to estimate instantaneous distributions of temperature. The analysis requires the specification of mean and rms temperature distributions, integral length scale distributions, and an assumption of exponential spatial correlation function. We specified the mean and rms temperature distributions measured by calibrated narrowband thin filament pyrometry. A simple flame and mixing model was used to relate the concentrations of CO2 and H2O to the temperature. We used scalar spatial series in conjunction with a radiation model to calculate the mean, rms, and PDFs of spectral radiation intensities. Overall, the model predictions are in reasonable agreement with the data. The only improvement needed is in the area of capturing correlated occurrences of high temperatures along the radiation path.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of multistage combustion on NOx emissions in methane–air flames

Coflow and counterflow methane–air flames are simulated over a complete partially premixed regime in order to characterize the effects of dominant combustion modes (i.e., single-, two-, and three-stage combustion) on NOx emissions. Simulations employ a comprehensive numerical model that uses detailed descriptions of transport and chemistry (GRI-2.11 mechanism) and includes radiation effects. It...

متن کامل

Effects of Small-Scale Turbulence on NOx Formation in Premixed Flame Fronts

Abstract A flamelet-based approach that accounts for turbulence-chemistry interaction has been formulated to simulate NOx formation in turbulent lean premixed combustion. In the simulations, the species NO is transported and solved with the chemical source term being modelled through its formation in flame fronts and its formation rate in post-flame regions. The flame-front NO and post-flame NO...

متن کامل

Numerical simulation of Lewis number effects on lean premixed turbulent flames

A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagat...

متن کامل

Influence of coal dust on premixed turbulent methane–air flames

This study discusses the design of a new experimental platform, the Hybrid Flame Analyzer (HFA) to measure burning velocity of gas, dust, and hybrid (gas and dust) premixed flames. The HFA is used to analyze a particle–gas–air system of coal dust particles (75–90 lm and 106–120 lm) in a premixed CH4–air (/g = 0.8, 1.0 and 1.2) flame. Experimental results show that particles usually increase the...

متن کامل

Impact of Turbulence Intensity and Equivalence Ratio on the Burning Rate of Premixed Methane–Air Flames

Direct Numerical Simulations (DNS) have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006